D'orenone blocks polarized tip growth of root hairs by interfering with the PIN2-mediated auxin transport network in the root apex.
نویسندگان
چکیده
SUMMARY The C(18) ketone (5E,7E)-6-methyl-8-(2,6,6-trimethylcyclohex-1-enyl)octa-5,7-dien-2-one (D'orenone) has been postulated to be an early cleavage product of beta-carotene en route to trisporic acids; these act as morphogenetic factors during the sexual reproduction of zygomycetes. Here we report that D'orenone blocks the highly polarized tip growth of root hairs, causing tip growth to stop completely within a few minutes. Importantly, external auxin reverses the effects of D'orenone on root hairs. Further analysis revealed that D'orenone lowers the auxin concentration in trichoblasts via PIN2-mediated auxin efflux to below the critical levels essential for root hair growth. D'orenone specifically increases PIN2 protein abundance without affecting PIN2 transcripts, and the PIN2 expression domain enlarges and shifts basipetally, resulting in more active auxin transport. The observation that D'orenone does not interfere with the root hair growth in roots of null mutant lines provides additional evidence that PIN2 is its specific target.
منابع مشابه
The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism.
Under blue light (BL) illumination, Arabidopsis thaliana roots grow away from the light source, showing a negative phototropic response. However, the mechanism of root phototropism is still unclear. Using a noninvasive microelectrode system, we showed that the BL sensor phototropin1 (phot1), the signal transducer NONPHOTOTROPIC HYPOCOTYL3 (NPH3), and the auxin efflux transporter PIN2 were essen...
متن کاملPIN2 is required for the adaptation of Arabidopsis roots to alkaline stress by modulating proton secretion
Soil alkalinity is a widespread environmental problem that limits agricultural productivity. The hypothesis that an auxin-regulated proton secretion by plasma membrane H(+)-ATPase plays an important role in root adaption to alkaline stress was studied. It was found that alkaline stress increased auxin transport and PIN2 (an auxin efflux transporter) abundance in the root tip of wild-type Arabid...
متن کاملGravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells.
In the root, the transport of auxin from the tip to the elongation zone, referred to here as shootward, governs gravitropic bending. Shootward polar auxin transport, and hence gravitropism, depends on the polar deployment of the PIN-FORMED auxin efflux carrier PIN2. In Arabidopsis thaliana, PIN2 has the expected shootward localization in epidermis and lateral root cap; however, this carrier is ...
متن کاملPlant Biology Select
In plants, the shoot and root meristems produce auxin, a hormone that directs growth and cellular elongation in response to light and gravity. The distribution of auxin in plants (and thus its availability to target tissues) is regulated by its directional transport within the plant. Recent findings highlight the importance of the PIN family of proteins in regulating auxin transport. The growth...
متن کاملA major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis.
Many key aspects of plant development are regulated by the polarized transport of the phytohormone auxin. Cellular auxin efflux, the rate-limiting step in this process, has been shown to rely on the coordinated action of PIN-formed (PIN) and B-type ATP binding cassette (ABCB) carriers. Here, we report that polar auxin transport in the Arabidopsis thaliana root also requires the action of a Majo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 55 4 شماره
صفحات -
تاریخ انتشار 2008